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ABSTRACT Hydrazone exchange, a popular tool in systems chemistry, especially in 
dynamic combinatorial chemistry, suffers from relatively slow rates of 
equilibration, particularly when working with macrocyclic systems. This 
problem has been addressed by several different approaches, in general 
involving nucleophilic catalysis. In this report we present the application of UV 
irradiation to accelerate hydrazone exchange, using (E) - to (Z)-isomerization 
as the means of activating library members. A photostationary state was 
reached within one day, which, in the present system, resembled the state 
that took two weeks to reach in the absence of irradiation. This approach 
overcomes the use of excessive amounts of catalysts, working in forcing 
conditions, or the design of the systems being restricted to quickly 
exchanging species. It also broadens the connection between dynamic 
combinatorial chemistry and photochemistry, as photo-equilibration gives rise 
to photodynamic combinatorial libraries, an emerging phenomenon at the 
interface of these two chemistries.
Keywords: systems chemistry; dynamic combinatorial chemistry; hydrazone 
exchange; reversible covalent chemistry; photoswitching.

Introduction 
Dynamic combinatorial chemistry (DCC) [1 – 14] 
studies mixtures of interconverting oligomers 
made of simple building blocks which reversibly 
connect through one or more types of covalent 
bonds, such as disulfide, imine, or (acyl) hydrazone 
linkages. Despite its relative novelty it has already 
established a prominent role in areas such as 
discovering molecular receptors [10, 15 – 18] and 
biologically active compounds [19 – 28], designing 
adaptive or responsive materials [2, 29 – 38], as 
well as in research on self-replicating molecules 
[39 – 46], complex reaction networks [47 – 54], 
and cascade reactions [55 – 56]. 
Acyl hydrazones are among the most exploited 
compounds in DCC due to their high stability, 
superior synthetic availability from the 
corresponding esters, and, more recently, because 

of the (photo)switchability of their C=N bonds [57 -
 60]. 
However, they are also well-known for their often-
sluggish formation and exchange, the latter 
particularly in macrocyclic systems, as the 
macrocyclic effect can act as a kinetic trap [61]. 
This problem has been approached by several 
different strategies [62], such as using extremely 
acidic environments (TFA in organic solvents) [9, 
14], specifically designed building blocks [63 – 67], 
or often large amounts of nucleophilic catalysts [15, 
61, 68 – 76] among which linear acyl hydrazides 
have proved to be particularly effective [61]. 

Aside from its use in the design of responsive 
materials [60, 77, 78] and reaction networks [79 – 
81], as well as in creating diversity in dynamic 
combinatorial libraries (DCLs) [57, 82], the 
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Scheme 2. Building-block structures. Cyclen-
based dihydrazide A, picolyl hydrazide B, and 
isophthalaldehyde C, and representative members 
of the DCLs: (AC)2 tetramer, BCB trimer, and the 
BCACB pentamer.

Scheme 1. UV-catalyzed hydrazone exchange.
The (Z)-isomer (above), produced by 
photoisomerization of a slowly reacting (E)-acyl 
hydrazone (below), is more reactive, which results 
in an increased rate of hydrazone exchange.

(photo)switchability of C=N bonds in hydrazones 
also offers a novel, fundamentally different 
approach to accelerate hydrazone exchange. Since 
the (Z)-isomers of hydrazones are generally less 
stable than the corresponding (E)-isomers, and 
hence likely to be more reactive, (E)  (Z)-
photoisomerization can be expected to provide 
hydrazone-based DCLs with more reactive species 
(a similar approach has been applied with 
disulfide-based DCLs, but there the activated 
species are thiyl radicals [83], different molecular 
species). This should in turn lead to increased rates 
of hydrazone exchange (Scheme 1), especially in 
systems where the (Z)-isomers are not stabilized, 
e.g., by intramolecular H-bonding. As it is not 
necessary that all hydrazones in a DCL have same 
the absorbance, UV irradiation of a DCL may 
ultimately lead not to an equilibrium, but, by 
selective activation, to a photodynamic [84 – 86] 
DCL. In photodynamic DCLs the composition is 
not controlled by thermodynamics, but rather by 
the kinetics of photoswitching and conversion of 
activated species into intermediate products and 
other library constituents. This characteristic 
makes such DCLs potentially interesting in the 
context of adaptive systems [47, 48, 50, 58 – 60]. 
However, photodynamic DCLs may have 
compositions close to equilibrated DCLs if the 
absorbances of the library constituents do not 
differ much. Thus, irradiation could be used to 
significantly shorten the period between the library 

setup and its equilibration.  
We tested the effects of UV irradiation on the 
exchange rates in acyl hydrazone libraries using a 
system comprising linear and macrocyclic 
hydrazones based on dihydrazide A, 
monohydrazide B, and dialdehyde C (Scheme 2). 
In this system several different species can be 
expected. A and C can give rise to a series of (AC)n 
macrocycles (e.g., the (AC)2 tetramer is shown in 
Scheme 2), B and C can form the BCB trimer 
(Scheme 2), while all three building blocks 
combined can yield a series of linear oligomers 
with general formula BC(AC)nB (BCACB is 
shown in Scheme 2). Mixing solutions of (AC)n 
macrocycles with B, as well as mixing solutions of 
BCB trimer with A, gives solutions in which all 
three building blocks are present, but condensed 
into hydrazones in different non-equilibrium 
states. If the overall concentrations of all three 
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building block units are the same in the starting 
solutions, their equilibration should lead to the 
same final composition. This principle could be 
used to assess whether the solutions have indeed 
reached equilibrium. The same principle, provided 
that thermal (Z)  (E) isomerization is quick, 
should hold when the solutions are exposed to UV, 
as the only expected photochemical reaction is the 
reversible (E)  (Z) photoisomerization. Hence, 
comparing the compositions of irradiated and non-
irradiated solutions over time should tell whether 
UV-irradiation can be used to accelerate hydrazone 
exchange, i.e., whether it leads to a composition 
similar to the one in an equilibrated system.  

Results and Discussion 
Prior to the UV irradiation experiments, we 
prepared and characterized the hydrazones formed 
from A and C, B and C, as well as the mixed library 
formed from A, B, and C. All hydrazones were 
prepared in aqueous ammonium acetate buffer 
(50 mM, pH 4.0), by mixing stock solutions of the 
corresponding hydrazide(s) and the aldehyde, with 
a final concentration of hydrazide and aldehyde 
groups of 2.0 mM. Characterization was performed 
by UPLC-MS, using the mixed DCL, and 
monitoring of equilibrating solutions was 
performed by UPLC. Upon mixing, A and C 
(solution (A, C)) initially formed a series of 
macrocycles which later equilibrated into 
predominantly (AC)2 tetramer (Figure 1, a), while 
B and C (solution (B, C)) formed the BCB trimer, 
with a small portion of the unsaturated BC dimer 
and free hydrazide B (Figure 1, b). When all three 
building blocks were present (solution (A, B, C), 
Figure 1, c), along with the (AC)2 tetramer and 
BCB trimer, a number of intermediate species was 
found, such as BCACB, BC(AC)2B, and 
BC(AC)3B, as well as several unsaturated species, 
such as BCA, BCAC, BC(AC)2, and BC(AC)3. Due 
to the large number of species in the DCLs 
(Figures S1 - S22), and the consequent overlapping 
of the peaks in the chromatograms, only the four 
major species: (AC)2, BCB, BCACB, and 
BC(AC)2B, were used to monitor the composition 
of the DCLs during the experiments.  
For the UV irradiation experiments we prepared 

solutions (A, C), (B, C), and (A, B, C) (ammonium 
acetate buffer, 50 mM, pH 4; total concentrations 
of hydrazide and aldehyde groups 2.0 mM; see 
Table S2). After one day of equilibration, we added 
A to (B, C), B to (A, C), and both hydrazides to (A, 
B, C), thus obtaining solutions with the same 
concentrations of A, B, and C units – 0.50 mM, 
1.0 mM, and 0.50 mM, respectively – but from 
three different starting points. Freshly prepared 
solutions were analyzed by UPLC, and immediately 
afterwards each solution was split into two parts: 
one to be exposed to UV irradiation (365 nm) for a 
day, and the other to equilibrate in the dark over 
the same period. Monitoring was also performed 
by UPLC. The results show a strong effect of UV 
irradiation on the behavior of the libraries. The 
compositions of the irradiated solutions reached 
similar and steady levels in less than 20 h 
(Figure 2, a and b), while the solutions that were 
not irradiated had still significantly different 
compositions at that point (Figure 2, c and d). It is 
interesting to note that the intermediate species 
exhibited an initial increase of their 
concentrations, followed by a decrease, particularly 

Figure 1. Chromatograms of the starting 
hydrazone solutions. a) DCL prepared from 
building blocks A and C (1.0 mM each); b) DCL 
prepared from building blocks B (2.0 mM) and C
(1.0 mM); c) DCL prepared from building blocks A
(0.50 mM), B (1.0 mM), and C (1.0 mM). All 
solutions were prepared in aqueous ammonium 
acetate buffer (50 mM, pH = 4) and were incubated 
for 12 days prior to UPLC analysis.
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visible in the solutions that were equilibrating in 
the dark (Figure 2, d). This suggests that BCACB, 
BC(AC)2B, and other intermediate species are not 
intermediate only in the sense of their 
compositions, but are also intermediate products 
of the hydrazone exchange when it starts from the 
terminal species. Similar kinetic profiles have also 
been reported in self-sorting DCLs [87 – 90]. 
To confirm these observations, we performed 
another experiment with the same basic setup, but 
with the final concentrations of A, B, and C units 
of 0.25 mM, 1.0 mM, and 0.25 mM, respectively 
(Table S3). From the decrease in the concentration 
of hydrazones we expected a corresponding 
decrease in exchange rates, while the larger excess 

of B was expected to give a larger amount of B-
containing hydrazones that were present in very 
small quantities in the initial setup. The results of 
this experiment (Figure S28) indeed showed 
decreased exchange rates, but the irradiated 
solutions still reached similar compositions within 
a day. The relative amounts of the B-containing 
hydrazones, however, remained small, only to 
confirm the strength of the macrocyclic effect. 
We investigated whether the increased exchange 
rates were indeed the effect of irradiation, and not 
merely a consequence of the heat released by the 
UV lamp. In additional control experiments we 
also investigated how much the photodynamic 
states differ from the equilibrium states. When 

Figure 2. Changes in composition of irradiated (a and b) and non-irradiated (c and d) non-equilibrated
hydrazone libraries. Three different non-equilibrated libraries ((A, C)+B, containing A (0.50 mM) and C (0.50 
mM) coupled into hydrazones, and free B (1.00 mM); (B, C)+A, containing B (1.00 mM) and C (0.50 mM) 
coupled into hydrazones, and free A (0.50 mM); and (A, B, C)+A+B, containing A (0.25 mM), B (0.50 mM) and 
C (0.50 mM) coupled into hydrazones, and free A (0.25 mM) and B (0.50 mM)) were each split into parts 
exposed to UV irradiation (a and b), or left to equilibrate in the dark (c and d). Both terminal (a) and intermediate 
(b) species in the irradiated libraries reach similar and stable concentrations in less than 20 h, while in the non-
irradiated libraries (c and d) equilibrium is not reached in the same period. All solutions were prepared in 
aqueous ammonium acetate buffer (50 mM, pH 4).
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only small differences between the equilibrium and 
photodynamic states would be observed, this 
would imply that UV irradiation can be used to 
accelerate hydrazone equilibration.  
The first question was addressed by measuring the 
temperature of samples during irradiation. This 
was done using a small temperature probe and 
blank samples containing water, which were either 
exposed to the irradiation from the UV lamp, or 
placed away from the lamp. The measurements 
showed that the UV lamp indeed heated the 
samples. However, the temperature of the 
irradiated sample stabilized after 3 h of irradiation 
to 2–3 °C above room temperature (Figure S31). 
The temperature measurements thus show that the 
effect of heating is small, which means that the 

observed behavior of the irradiated libraries cannot 
be attributed to the increase of temperature, but 
predominantly to the UV irradiation (Figure 3, 
top) 
The second question essentially requires that the 
samples kept in the dark reach equilibrium, as only 
then it can be assessed whether irradiation indeed 
shortens the time needed to reach equilibrium, or 
it leads to other outcomes, such as kinetic trapping 
or photodegradation. We again prepared solutions 
(A, C) and (B, C) (setup in Table S4), and, after a 
day of equilibration, added B to (A, C) and A to (B, 
C), thus obtaining solutions (A, C)+B and (B, 
C)+A, each with final concentrations of A, B, and 
C units of 0.50 mM, 1.0 mM, and 0.50 mM, 
respectively, but with different starting points with 

Figure 3. UV-accelerated hydrazone equilibration. Two different non-equilibrated libraries ((A, C)+B,
containing A (0.50 mM) and C (0.50 mM), coupled into hydrazones and free B (1.00 mM); and (B, C)+A,
containing B (1.00 mM) and C (0.50 mM) coupled into hydrazones and free A (0.50 mM)) were each split into 
parts exposed to UV irradiation (UV), or left to equilibrate in the dark, away from the UV lamp (dark). In the 
irradiated samples (a and b) photoequilibrium was reached after 2 days of irradiation. Irradiation was then 
discontinued, and all samples were left to equilibrate in the dark. After 5 days, the samples that were initially 
irradiated reached stable concentrations. The non-irradiated samples (c and d) took about two weeks to 
equilibrate. All solutions were prepared in aqueous ammonium acetate buffer (50 mM, pH 4).
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respect to hydrazones and free hydrazides. After 
the initial UPLC analysis, performed immediately 
after preparing the samples, each solution was split 
into two parts. As in the previous experiments, 
they were either exposed to UV irradiation (UV), or 
kept in dark (dark). After 2 days of irradiation, the 
UV lamp was switched off, and all samples were 
monitored while kept in dark until the non-
irradiated samples reached the equilibrium state. 
As previously observed, the concentrations of the 
library constituents in the irradiated libraries 
reached similar levels after about one day, while 
the non-irradiated libraries were still far from the 
equilibrium state at that moment (Figure S29). 
After another day of irradiation, the concentrations 
of the monitored species reached constant values, 
indicating that the library had reached a dynamic 
stationary state. Irradiation was then stopped, 
causing the concentrations of the library 
constituents to undergo modest changes. After 5 
days of standing in the dark, the concentrations 
stabilized at values that were not far from those in 
the photostationary state (Figure 3, a and b). 
Altogether, in about a week after the start of the 
experiment, the irradiated libraries have reached 
the equilibrium state. In the non-irradiated 
libraries, on the other hand, some library members 
reach what appears to be their equilibrium state in 
about two weeks (Figure 3, c), while others have 
still not reached a constant concentration 
(Figure 3, d). 
In the final states of the libraries (Figure 3) the 
amount of the (AC)2 tetramer is somewhat lower in 
the irradiated samples compared to the non-
irradiated ones. This difference is most likely 
caused by (largely non-selective) photodegradation 
of the hydrazones. 
The results above show that it is possible to 
significantly shorten the time needed for exchange 
in acyl hydrazone libraries using UV light, in this 
example from about two weeks to one day (for the 
photostationary state) or one week (for subsequent 
equilibration). The disadvantage of this approach 
is, however, a small extent of photodegradation, as 
exemplified by the decreased amounts of the (AC)2 
tetramer in the irradiated libraries. Thus, in 
designing experiments where UV light will be used 

to accelerate hydrazone exchange some effort 
should be put into finding the balance between the 
time saved by shortening the duration of the 
experiments, and the library material loss due to 
the photodegradation. These results also 
demonstrate that photomediated hydrazone 
exchange occurs faster than the corresponding 
thermal exchange, indicating that photoirradiation 
may provide access to out-of-equilibrium library 
distributions. While in the present system the 
equilibrium distribution and the photodynamic 
state were similar, in systems where different 
library members interact with light with different 
efficiencies, the thermal and photodynamic states 
should be substantially different. 

Conclusions 
In this research we have shown that 
responsiveness of (acyl) hydrazone libraries to UV 
irradiation, and the consequent formation of 
photodynamic DCLs, aside from their use in design 
of responsive or adaptive systems, can be used to 
address a long-standing problem in hydrazone 
chemistry. Namely, as UV irradiation can quickly 
transform any hydrazone-based DCL into a 
photodynamic DCL, formation of such systems by 
irradiation can serve to reduce the time required 
for performing hydrazone exchange. This can be 
particularly useful for systems where thermal 
(E)/(Z) isomerization is fast, and may find use 
wherever equilibration is unacceptably slow. 
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